• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
Sas 101

Sas 101

Master the Art of Building Profitable Software

  • Home
  • Terms of Service (TOS)
  • Privacy Policy
  • About Us
  • Contact Us
  • Show Search
Hide Search

agentic ai

AI-Driven Development in ASP.NET Core

UnknownX · January 12, 2026 · Leave a Comment

 

Building AI-Driven ASP.NET Core APIs: Hands-On Guide for .NET Developers

 

 

Executive Summary

AI-Driven Development in ASP.NET Core

– In modern enterprise applications, AI transforms static APIs into intelligent systems that analyze user feedback, generate personalized content, and automate decision-making. This guide builds a production-ready Feedback Analysis API that uses OpenAI’s GPT-4o-mini to categorize customer feedback, extract sentiment, and suggest actionable insights—solving real-world problems like manual review bottlenecks while ensuring scalability and security for enterprise deployments.

Prerequisites

  • .NET 10 SDK (latest stable)
  • Visual Studio 2022 or VS Code with C# Dev Kit
  • OpenAI API key (get from platform.openai.com)
  • NuGet packages: OpenAI, Microsoft.Extensions.Http, Microsoft.EntityFrameworkCore.Sqlite

Run these commands to scaffold the project:

dotnet new webapi -o AiFeedbackApi --use-program-main
cd AiFeedbackApi
dotnet add package OpenAI --prerelease
dotnet add package Microsoft.EntityFrameworkCore.Sqlite
dotnet add package Microsoft.EntityFrameworkCore.Design
code .

Step-by-Step Implementation

Step 1: Configure AI Settings Securely

Add your OpenAI key to appsettings.json using User Secrets in development:

// appsettings.json
{
  "AI": {
    "OpenAI": {
      "ApiKey": "your-api-key-here",
      "Model": "gpt-4o-mini"
    }
  },
  "ConnectionStrings": {
    "Default": "Data Source=feedback.db"
  }
}

Step 2: Create the Domain Model with Primary Constructors

Define our feedback entity using modern C# 13 primary constructors:

// Models/FeedbackItem.cs
public class FeedbackItem(int id, string text, string category, double sentimentScore)
{
    public int Id { get; } = id;
    public required string Text { get; init; } = text;
    public string Category { get; set; } = category;
    public double SentimentScore { get; set; } = sentimentScore;
    
    public FeedbackItem() : this(0, string.Empty, string.Empty, 0) { }
}

Step 3: Build the AI Analysis Service

Create a robust, typed AI service using the official OpenAI client and HttpClientFactory fallback:

// Services/IAiFeedbackAnalyzer.cs
public interface IAiFeedbackAnalyzer
{
    Task<(string Category, double SentimentScore)> AnalyzeAsync(string feedbackText);
}

// Services/AiFeedbackAnalyzer.cs
using OpenAI.Chat;
using OpenAI;

public class AiFeedbackAnalyzer(OpenAIClient client, IConfiguration config) : IAiFeedbackAnalyzer
{
    private readonly ChatClient _chatClient = client.GetChatClient(config["AI:OpenAI:Model"] ?? "gpt-4o-mini");
    
    public async Task<(string Category, double SentimentScore)> AnalyzeAsync(string feedbackText)
    {
        var messages = new List
        {
            new SystemChatMessage("""
                Analyze customer feedback and respond ONLY with JSON:
                {"category": "positive|negative|neutral|suggestion|bug", "sentiment": 0.0-1.0}
                Categories: positive, negative, neutral, suggestion, bug.
                Sentiment: 1.0 = very positive, 0.0 = very negative.
                """),
            new UserChatMessage(feedbackText)
        };
        
        var response = await _chatClient.CompleteChatAsync(messages);
        var jsonResponse = response.Value.Content[0].Text;
        
        // Parse structured JSON response safely
        using var doc = JsonDocument.Parse(jsonResponse);
        var category = doc.RootElement.GetProperty("category").GetString() ?? "neutral";
        var sentiment = doc.RootElement.GetProperty("sentiment").GetDouble();
        
        return (category, sentiment);
    }
}

Step 4: Set Up Dependency Injection and DbContext

Register services in Program.cs with minimal APIs:

// Program.cs
using Microsoft.EntityFrameworkCore;
using OpenAI;

var builder = WebApplication.CreateBuilder(args);

var apiKey = builder.Configuration["AI:OpenAI:ApiKey"] 
    ?? throw new InvalidOperationException("OpenAI ApiKey is required");

builder.Services.AddOpenAIClient(apiKey);
builder.Services.AddScoped<IAiFeedbackAnalyzer, AiFeedbackAnalyzer>();
builder.Services.AddDbContext(options =>
    options.UseSqlite(builder.Configuration.GetConnectionString("Default")));

builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

var app = builder.Build();

if (app.Environment.IsDevelopment())
{
    app.UseSwagger();
    app.UseSwaggerUI();
}

app.UseHttpsRedirection();
app.MapFallback(() => Results.NotFound());

app.Run();

// AppDbContext.cs
public class AppDbContext(DbContextOptions options) : DbContext(options)
{
    public DbSet<FeedbackItem> FeedbackItems { get; set; } = null!;
    
    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        modelBuilder.Entity<FeedbackItem>(entity =>
        {
            entity.HasKey(e => e.Id);
            entity.Property(e => e.Category).HasMaxLength(50);
        });
    }
}

Step 5: Implement Minimal API Endpoints

Add intelligent endpoints that process feedback in real-time:

// Add to Program.cs after app.Build()

app.MapPost("/api/feedback/analyze", async (IAiFeedbackAnalyzer analyzer, [FromBody] string text) =>
{
    var (category, sentiment) = await analyzer.AnalyzeAsync(text);
    return Results.Ok(new { Category = category, SentimentScore = sentiment });
});

app.MapPost("/api/feedback", async (AppDbContext db, IAiFeedbackAnalyzer analyzer, [FromBody] string text) =>
{
    var (category, sentiment) = await analyzer.AnalyzeAsync(text);
    var feedback = new FeedbackItem(0, text, category, sentiment);
    
    db.FeedbackItems.Add(feedback);
    await db.SaveChangesAsync();
    
    return Results.Created($"/api/feedback/{feedback.Id}", feedback);
});

app.MapGet("/api/feedback/stats", async (AppDbContext db) =>
    Results.Ok(await db.FeedbackItems
        .GroupBy(f => f.Category)
        .Select(g => new { Category = g.Key, Count = g.Count(), AvgSentiment = g.Average(f => f.SentimentScore) })
        .ToListAsync()));

Step 6: Test Your AI API

Run dotnet run and test with Swagger or curl:

curl -X POST "https://localhost:5001/api/feedback/analyze" \
  -H "Content-Type: application/json" \
  -d '"The UI is intuitive and fast!"'
  
# Response: {"category":"positive","sentimentScore":0.92}

Production-Ready C# Examples

Here’s our complete, optimized controller alternative using primary constructors and source generators:

[ApiController]
[Route("api/v1/[controller]")]
public class FeedbackController(AppDbContext db, IAiFeedbackAnalyzer analyzer) : ControllerBase
{
    [HttpPost]
    public async Task<IActionResult> AnalyzeAndStore([FromBody] AnalyzeRequest request)
    {
        ArgumentNullException.ThrowIfNull(request.Text);
        
        var (category, sentiment) = await analyzer.AnalyzeAsync(request.Text);
        
        var item = new FeedbackItem(0, request.Text, category, sentiment);
        db.FeedbackItems.Add(item);
        await db.SaveChangesAsync();
        
        return CreatedAtAction(nameof(GetById), new { id = item.Id }, item);
    }
    
    [HttpGet("{id:int}")]
    public async Task<IActionResult> GetById(int id) =>
        await db.FeedbackItems.FindAsync(id) is { } item 
            ? Ok(item) 
            : NotFound();
}

public record AnalyzeRequest(string Text);

Common Pitfalls & Troubleshooting

  • API Key Leaks: Never commit keys—use dotnet user-secrets and Azure Key Vault in prod.
  • Rate Limits: Implement Polly retry policies: AddHttpClient().AddPolicyHandler(...).
  • JSON Parsing Failures: Always validate AI responses with JsonDocument and provide fallbacks.
  • Cold Starts: Pre-warm AI clients in IHostedService.
  • Token Limits: Truncate long inputs: text[..Math.Min(4000, text.Length)].

Performance & Scalability Considerations

  • Caching: Cache frequent analysis patterns with IMemoryCache (TTL: 5min).
  • Background Processing: Use IBackgroundService + Channels for batch analysis.
  • Distributed Tracing: Integrate OpenTelemetry for AI call monitoring.
  • Model Routing: Abstract IAiProvider to switch between OpenAI, Azure OpenAI, or local models.
  • Horizontal Scaling: Stateless services + Redis for shared cache/state.

Practical Best Practices

  • Always implement structured prompting with system messages for consistent JSON output.
  • Use record types for requests/responses to leverage source generators.
  • Implement circuit breakers for AI dependencies using Polly.
  • Add unit tests mocking OpenAIClient with Moq.
  • Log AI requests/responses (anonymized) with Serilog for model improvement.
  • Enable streaming responses for long completions: chatClient.CompleteChatStreamingAsync().

Conclusion

You’ve built a production-grade AI-powered Feedback API that scales from MVP to enterprise. Next steps: integrate with Blazor frontend, add RAG with vector databases, or deploy to Azure Container Apps with auto-scaling. Keep iterating—AI development is about continuous improvement.

FAQs

1. How do I handle OpenAI rate limits in production?

Implement exponential backoff with Polly:

services.AddHttpClient<IAiFeedbackAnalyzer>().AddPolicyHandler(
    Policy.HandleResult<HttpResponseMessage>(r => !r.IsSuccessStatusCode)
          .WaitAndRetryAsync(3, retry => TimeSpan.FromSeconds(Math.Pow(2, retry)))); 

2. Can I use local ML.NET models instead of OpenAI?

Yes! Create IAiFeedbackAnalyzer implementations for both and use DI feature flags to switch.

3. How do I secure the AI endpoints?

Add [Authorize] with JWT, rate limiting via AspNetCoreRateLimit, and validate inputs with FluentValidation.

4. What’s the cost of GPT-4o-mini for 1M feedbacks?

~400 input tokens per analysis × $0.15/1M tokens = ~$0.10 per 1K analyses. Cache aggressively.

5. How do I add streaming AI responses?

Use CompleteChatStreamingAsync() and Response.StartAsync() for real-time UI updates.

6. Can I deploy this to Azure?

Perfect for Azure Container Apps + Azure OpenAI (same SDK). Use Managed Identity for keys.

7. How do I test AI responses deterministically?

Mock OpenAIClient or use fixed prompt responses in integration tests.

8. What’s the latency impact of AI calls?

200-800ms per call. Use async/await everywhere and consider client-side caching.




You might also like these

AI-Native .NET: Building Intelligent Applications with Azure OpenAI, Semantic Kernel, and ML.NET

AI-Augmented .NET Backends: Building Intelligent, Agentic APIs with ASP.NET Core and Azure OpenAI

Master Effortless Cloud-Native .NET Microservices Using DAPR, gRPC & Azure Kubernetes Service

Build an AI chat app with .NET (Microsoft Learn) — Quickstart showing how to use OpenAI or Azure OpenAI models with .NET.
🔗 https://learn.microsoft.com/en-us/dotnet/ai/quickstarts/build-chat-app

Develop .NET apps with AI features (Microsoft Learn) — Overview of AI integration in .NET apps (APIs, services, tooling).
🔗 https://learn.microsoft.com/en-us/dotnet/ai/overview

AI-Powered Group Chat sample with SignalR + OpenAI (Microsoft Learn) — Demonstrates real-time chat with AI in an ASP.NET Core app.
🔗 https://learn.microsoft.com/en-us/aspnet/core/tutorials/ai-powered-group-chat/ai-powered-group-chat?view=aspnetcore-9.0

Primary Sidebar

Recent Posts

  • Modern Authentication in 2026: How to Secure Your .NET 8 and Angular Apps with Keycloak
  • Mastering .NET 10 and C# 13: Ultimate Guide to High-Performance APIs 🚀
  • The 2026 Lean SaaS Manifesto: Why .NET 10 is the Ultimate Tool for AI-Native Founders
  • Building Modern .NET Applications with C# 12+: The Game-Changing Features You Can’t Ignore (and Old Pain You’ll Never Go Back To)
  • The Ultimate Guide to .NET 10 LTS and Performance Optimizations – A Critical Performance Wake-Up Call

Recent Comments

No comments to show.

Archives

  • January 2026

Categories

  • .NET Core
  • 2026 .NET Stack
  • Enterprise Architecture
  • Kubernetes
  • Machine Learning
  • Web Development

Sas 101

Copyright © 2026 · saas101.tech · Log in